Performance enhancement of GaN-based light emitting diodes by transfer from sapphire to silicon substrate using double-transfer technique

نویسندگان

  • Jiang-Yong Zhang
  • Wen-Jie Liu
  • Ming Chen
  • Xiao-Long Hu
  • Xue-Qin Lv
  • Lei-Ying Ying
  • Bao-Ping Zhang
چکیده

GaN-based light emitting diodes (LEDs) fabricated on sapphire substrates were successfully transferred onto silicon substrates using a double-transfer technique. Compared with the conventional LEDs on sapphire, the transferred LEDs showed a significant improvement in the light extraction and thermal dissipation, which should be mainly attributed to the removal of sapphire and the good thermal conductivity of silicon substrate. Benefited from the optimized wafer bonding process, the transfer processes had a negligible influence on electrical characteristics of the transferred LEDs. Thus, the transferred LEDs showed a similar current-voltage characteristic with the conventional LEDs, which is of crucial importance for practical applications. It is believed that the double-transfer technique offers an alternative way to fabricate high performance GaN-based thin-film LEDs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Performance of GaN-based light-emitting diodes fabricated using GaN epilayers grown on silicon substrates.

Light extraction of GaN-based light-emitting diodes grown on Si(111) substrate (GaN-on-Si based LEDs) is presented in this study. Three different designs of GaN-on-Si based LEDs with the lateral structure, lateral structure on mirror/Si(100) substrate, and vertical structure on mirror/Si(100) substrate were epitaxially grown by metalorganic chemical vapor deposition and fabricated using chemica...

متن کامل

Optical crosstalk analysis of micro-pixelated GaN-based light-emitting diodes on sapphire and Si substrates

With the aid of depth-resolved confocal microscopy, the optical crosstalk phenomenon in GaN-based micro-pixel light-emitting diodes (m-LEDs) on Si substrates are thoroughly investigated and compared with its counterpart on sapphire substrate. Noticeable optical crosstalk is invariably present in GaNon-sapphire devices as the thick transparent sapphires beneath the m-LEDs serve as optical wavegu...

متن کامل

Abbreviated MOVPE nucleation of III-nitride light-emitting diodes on nano-patterned sapphire

Metalorganic vapor phase epitaxy (MOVPE) nucleation studies of GaN on planar sapphire and nanopatterned AGOG (Deposition of Aluminum, Growth of Oxide, and Grain growth) sapphire substrates were conducted. The use of abbreviated GaN growth mode, which utilizes a process of using 15 nm low-temperature GaN buffer and bypassing etch-back and recovery processes during epitaxy, enables the growth of ...

متن کامل

Thermally enhanced blue light-emitting diode

Articles you may be interested in Performance enhancement of blue light-emitting diodes with a special designed AlGaN/GaN superlattice electron-blocking layer Appl. Raman and emission characteristics of a-plane InGaN/GaN blue-green light emitting diodes on r-sapphire substrates J. Thermally stable and highly reflective AgAl alloy for enhancing light extraction efficiency in GaN light-emitting d...

متن کامل

Enhancement of InGaN-Based Light Emitting Diodes Performance Grown on Cone-Shaped Pattern Sapphire Substrates

To enhance light extraction effciency, high-quality InGaN-based light emitting diodes (LED) was grown on cone-shaped patterned sapphire (CPSS) by using metal organic chemical vapor deposition (MOCVD). From the transmission electron microscopy (TEM) observation, the CPSS was confirmed to be an efficient way to reduce the threading dislocation density in the GaN epilayer. A sharp and high intensi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012